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Dynamical theory of active cellular response to external stress
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We present a comprehensive, theoretical treatment of the orientational response to external stress of active,
contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the
deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions
of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic
dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic
external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient
nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we
predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses;
several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted.
We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by
strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio

of the matrix can differentiate strain vs stress regulation of cellular response.
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I. INTRODUCTION

As the basic unit of life, cells perform many specialized
functions such as the encoding and decoding of genetic in-
formation, the synthesis and transport of molecules, and the
maintenance of their own internal structure (homeostasis).
Many of these biological processes involve cellular mechani-
cal activity. The understanding of the mechanical activity of
cells and its implications for intercellular as well as cell-
extracellular matrix interactions is important for wound heal-
ing, muscle growth, tissue assembly, and development [ 1-8].
Numerous experiments indicate how cells sense their me-
chanical environment (e.g., its rigidity, and the presence of
external strains). As living bodies, cells respond to these fac-
tors in an active manner (e.g., by actively adjusting their
contractile activities) [9-12]. In addition it has been shown
that cells remodel their cytoskeleton by reorganizing the
stress fibers, adhesions, and traction forces to maintain a tac-
tile set point in the adjacent matrix [1,13-16]. Many cell
types show better developed stress fibers and focal adhesions
(FA) when plated on rigid elastic substrates compared with
floating (and elastically nonresistant) substrates [17]. It has
also been observed that fibroblasts migrate from softer to
stiffer substrates, orient themselves near material boundaries,
and align in the direction of tensile strain [18]. In addition,
there are experiments that show that cells respond differently
to static or quasistatic strain (on the scale of many minutes)
compared with rapidly varying cyclic strain (on the scale of
1 Hz). When the matrix in which the cells are embedded is
subjected to a static or quasistatic strain, cells tend to orient
along the direction of applied stress [19-23]. However, for
rapidly varying strains, cells tend to orient away from the
stress direction; for high frequency cyclic strain, cells align
nearly perpendicular to the strain direction [24-33].

In this paper, we present a comprehensive theoretical
study of the orientational response of cells in the presence of
externally applied stresses as well as predictions for the in-
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fluence of the surrounding elastic medium on the orientation
dynamics. We address several long-standing experimental re-
sults including the parallel alignment of cells in response to
static or quasistatic stresses and the nearly perpendicular
alignment of cells in response to high frequency (~1 Hz)
dynamic stresses. A brief report of some of the results was
presented in [34] in which the dynamics was calculated nu-
merically. Here, we present analytical results that predict the
cell alignment dynamics; these results agree with the numeri-
cal calculations in the appropriate limits. In addition, we
present calculations of the frequency-dependent relaxation
time for the cells to reach their steady-state orientation. We
find three distinct scaling regimes as a function of frequency
of the cyclically varying applied stress. We also predict how
the frequency-dependent cell orientation dynamics depends
on the Poisson ratio of the matrix. Our theory suggests that
the measurements of this effect can identify whether the cell
mechanosensitivity is controlled by the stress (force) in the
extracellular matrix or by the strain (deformation), a contro-
versial issue—which is unresolved to date [15,16,35].

In Sec. II, we describe and explain our dynamical model
in detail. Section III presents our predictions for cell orien-
tation in the presence of both static and dynamic stresses,
including the frequency dependence of the orientation. The
second part of Sec. III focuses on the cellular relaxation time,
i.e., the time required for the cell to reach its steady-state
orientation, as a function of the frequency of the externally
applied stretch. In Sec. IV, we show how the cellular re-
sponse is affected by the variation of the Poisson ratio of the
surrounding elastic medium. In the Appendixes we present
further theoretical details including the elastic theory of di-
poles, their self-energies (including a correction of results
presented in [34,35]) and their interactions with external
stresses, a derivation of the model free energy and dynamical
equations that are based on symmetry arguments as well as
an analytical solution for the frequency-dependent, cellular
response to cyclically varying applied stresses.
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II. THEORY: ACTIVE CELLS IN AN ELASTIC MATRIX

Recent experiments show that cells strongly respond to
their mechanical environment. Anchorage-dependent cells
establish numerous focal adhesions (FA) along their periph-
ery and constantly probe the mechanical properties of their
surroundings by assembling and disassembling focal adhe-
sions. These FA are connected by actin stress fibers; the pres-
ence of myosin motors results in an internal tension of these
stress fibers; the tension is transmitted to the extracellular
matrix (ECM) via the FA. The FA act as mechanosensors and
are an important component in the regulation of cell tension.
In our model, we consider stationary, mechanically active
cells that have already established mature focal adhesions
and are in mechanical equilibrium with the surrounding ma-
trix. The sum of the forces exerted by the focal adhesions, in
a coarse-grained picture, are modeled as a pair of equal and
oppositely directed contraction forces [36-38]. The local, fo-
cal adhesion structure is anisotropic since the forces that
arise from the tension in the actin cytoskeleton tend to po-
larize the actin stress fibers and focal adhesions. Due to this
anisotropic probing of the medium by the cells, the contrac-
tion dipoles can be described by an anisotropic force dipole
tensor,

P;=Lf;=(Ifymn; = Pmn;. (1)

where [ is a measure of the distance between the two equal
but oppositely directed forces, f, due to acto-myosin contrac-
tility. 77 and m are the unit vectors along the directions of /

and the pinching force f, respectively. Based on experimental
measurements of forces exerted by cells, the typical magni-
tude of the dipole strength for contraction dipoles, P <0, is
=10"""J [36]. In principle, the dipole tensor has force com-
ponents in all directions. However, we shall specialize to the
case where the force and the distance vectors are parallel so
that m=n. Moreover, we focus on a single cell, appropriate
to a dilute system. However, the results can be generalized to
include interactions of many cells; cell-cell interactions re-
sult in “screening” of the external stress field that can be
expressed by an effective “dielastic constant” as described in
Ref. [39].

For simplicity, our model focuses on cells that show bi-
polar morphologies, e.g., muscle cells and fibroblasts. We
assume the instantaneous alignment of such needlelike cells

to be in the z direction; the force, f, and the vector connect-
ing the focal adhesions, /, are then both along the cell axis
(i.e., along the z direction) and the force dipole is

zYjz

Appendix A reviews the elastic theory for a force dipole
in an elastic medium and derives the stress, strain, self-
energy, and interaction of a force dipole with an external
stress or strain. These results are used in this section and in
the remainder of this paper.

In our theory, we account for the fact that both the mag-
nitude and the direction of the force dipole (that represents a
contractile cell) are regulated by the cell which changes its
contractile activity and orientation by reorganizing the focal
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adhesions and stress fibers in response to external forces.
However, this reorganization can only occur if the temporal
variation of the external force is slower than the characteris-
tic time required for the focal adhesions and stress fibers to
reform. As discussed below in detail, this is the origin of the
very different responses of cells to static and quickly vary-
ing, time-dependent external stresses. Cells pull on their en-
vironment and via their mechanosensitivity, establish forces
in response to stresses in the matrix along the direction of the
focal adhesions [13,14]. Moreover, measurements of the
forces exerted by cells in a strained matrix suggest that cells
remodel their stress fibers and FA to maintain a constant total
local stress (a constant, “endogenous” matrix tension as re-
ferred in Ref. [14]). Cells taken from solution and placed in
a gel, establish a contractile force that eventually reaches a
steady-state value at long times. Some experiments show that
after this state is reached, the application of an external strain
to the system, results in a decrease in the average contractile
force exerted by the cells [14]. This suggests that cells read-
just their contractile activity to maintain an optimal, local
force in the matrix in the presence of external stress.

For simplicity, and to model needle-shaped cells, such as
fibroblasts and muscle cells, we consider an elongated cell
whose long axis is in the z direction. We assume that the
focal adhesions and the stress fibers are also oriented in this
direction and thus, the force dipole has only zz component.
In addition, motivated by the experiments that show that
cells regulate their contractile activity in response to the
stress in the matrix, we assume that the cell maintains a set
point that is determined by the response of the focal adhe-
sions to the zz component of the stress in the matrix (both the
force as well as surface normal are in the z direction). Since
these adhesions are located at the tip of the cell we assume
that their mechanosensitivity is regulated by the zz compo-
nent of the stress right outside the “tip”” of the cell. For a cell
located at the origin, this “tip” is at 7/=(0,0,a) where a de-
notes the cell size.

Thus, for a force dipole, P;;=Pd;,6;,, located at the origin
[7=(0,0,0)], the local reaction strain Ufz at 7=(0,0,a) in the
matrix can be derived from the Green’s function using Eq.
(A2) and Eq. (A7),

P(1+v)

R

Ve g )
where E is the Young’s modulus and v is the Poisson ratio of

the matrix. Similarly, the other strain components are
UR =R = M
WU A TE(l - v)

(4)

The corresponding local stress components are given (fol-
lowing Ref. [40]) as

E ( 4 s ) (5)

g;::= u::+ u P
P+ 1=y 1T

Because the focal adhesions tend to polarize and elongate

along the force direction, we assume that the cell mecha-

nosensors do not measure the angle-averaged stress but only

the local component of the force along the cell major axis,
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Direction of
applied stress

FIG. 1. An illustration of the instantaneous position of a needle-
like cell oriented along the z axis. The reaction stress, R, in the
matrix arises from contractile activity, P <0, of the cell.

just outside the cell. Thus, the zz component of the reaction
stress, R, in the matrix just outside the cell and along the cell
axis (in the z direction, which is the elongation direction of
the mechanosensitive focal adhesions) is derived using Eq.

(5),

R 2-vP P
R=0.J7=0.00)=- 2 F="s =~ B)—5. (6)
where we define B(v)=(2-v)/2(1-w). The total local stress
in the matrix along the cell axis (positive z direction) is the
sum of the reaction stress, proportional to —P, due to cell’s
own contractile activity and any applied external stresses.
The reaction stress, R, represents a stretch in the adjacent
matrix since the cell dipole P <0 is contractile.

As we have discussed before, we choose a coordinate
system in which the instantaneous position of a needlelike
cell is along the z axis and the angle of the externally applied
stress, oﬁ’j, relative to z is #, as illustrated in Fig. 1. The
applied stress has, in general, components in all directions.
The force in the matrix along the direction of the cell axis is

fi=0in; where n; is the outward normal [40]. The compo-

nent of the force along the z direction is given by f,=f-7..
Thus, the component of the applied force along the cell axis
is proportional to o“ cos® #, where o is the magnitude of the
applied stress. One can also see this from symmetry consid-
erations: The cos® # dependence is due to the fact that the
force dipole cannot distinguish the 6 and (7— 6) directions.
We define P,=0“ma®, which has dimensions of energy; this
notation allows us to refer to the external stress and dipole
strength using the same units.

In our model, the local activity of the cell adjusts the cell
contractility by reorganizing the FA and stress fibers to main-
tain an optimal stress magnitude, o*, in the adjacent matrix
along the z direction. To convert this optimal stress to an
energy, we define P*=c*ma®>0. The optimal total local
stress in the matrix is achieved when the sum of the reaction
stress [Eq. (6)] in the matrix, R, due to cell contractile activ-
ity and the external stress is equal to the optimal stress, P*,
i.e., (R+P, cos’ §)=P*. In the absence of any external stress,
the optimum condition implies that R=P*. Any change in
this condition will result in the development of internal
forces within the cell that will tend to reestablish the optimal
force condition. For mathematical convenience, these forces
can be derived from variations of an effective free energy,
F,  that accounts for all of the local processes within the cell
(e.g., reassembly of the FA and stress fibers as well as the
effects of the myosin molecular motors) that establish the
cellular response to its local environment. Thus,
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2-v)
(1 -v)

where y is a measure of cell activity, (i.e., the tendency of
the cell to reorganize its focal adhesions and stress fibers
once the stress in the matrix is not at its optimal value) and
has the dimensions of an inverse energy. However, the inter-
nal cell dynamics alone does not uniquely determine the
magnitude and the orientation of the force dipole in the
steady state; it provides only a single constraint that involves
both the magnitude of P and its direction. A unique determi-
nation of both these factors can be derived if one includes the
mechanical forces exerted by the matrix on the cell. In gen-
eral, one could also consider stochastic forces that act on the
cell, but these are outside the scope of the present work;
some effects due to random forces are discussed in [39]. The
mechanical forces are derived from the elastic deformation
energy of the matrix. We thus include both the deformation
energy of the elastic matrix arising from the long-range
strains due to the cellular force dipoles as well as strains due
to external forces.

For an applied stress, O'Z:a'“n,-nj, whose corresponding
strain in the matrix is u{;, we calculate the strain field [40]
along the cell axis in the z direction: u?zzo“[(l+v)cos2 0
—v]/E. This is true in the dilute limit where the cell density
is low enough that depolarization effects due to the reorien-
tation of the surrounding cells can be neglected. We thus,
write the mechanical energy of a cell in the presence of an
external stress as (for detailed derivation see Appendix A)

1 2
Foo== x(Pa cos? 6 - P- P*) , (7)

2

2

F,= E%a(v) + %PL,P[(I +v)cos? 61— ], (8)
where E'=Ema®, 6 is the direction of the externally applied
stress relative to the cell axis, and the constant «(v) depends
on the regularization procedure for calculating the self-
energy (see Appendix A). We note that the external stress
can, in general, be frequency dependent and motivated by the
experiments we consider cyclic stresses of frequency w,, o
=0d“(1—cos w,t).

The total generalized force that acts on the cell is derived
from the variation of the total effective free energy, F'=F_
+F,,, that includes both the cell energy and the matrix en-
ergy. We rewrite the free energy F in dimensionless units as
f=F/(xP*?). The local stress due to the dipole, P, and the
applied external stress, P,, are scaled by the optimal stress,
P*, and we define P=pP* and P,=p,P* where p and p, are
dimensionless. We define the dimensionless parameter c
=1/(xE') which is a measure of the competition between
forces due to cell activity and those due to the matrix elas-
ticity. Thus, the total effective energy in dimensionless units
is

£=5[pacos® 6= pB(v) - 17+ Sep?a(v)
+cpp (1 + v)cos? 6—v]. 9)

In Appendix B, we show how the total effective free en-
ergy can be derived from symmetry arguments in which we
require a free energy that is a scalar function of products of
the stress tensor (for uniaxial stresses applied normal to the
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cell boundary) and the two vectors that represent the cellular
force and the long axis of the cell. We obtain terms similar to
those written above, but without, of course, the physical dis-
tinction of mechanical forces, cell forces, stress set-point,
etc.

III. THEORETICAL PREDICTIONS: DYNAMICS
OF CELL ORIENTATION

A. Steady-state cellular response in the presence
of static stress

As we have discussed in the preceding section, in the
presence of an external applied stress, cells readjust their
contractile activity to reestablish the optimal stress in the
matrix. The net, generalized force acting on the system can
be derived from the gradient of the effective free energy, f,
from Eq. (9). For simplicity of presentation, we first study
the dynamics for the case where the Poisson ratio of the
elastic matrix is negligible (i.e., »=0).

We first minimize the free energy with respect to the mag-
nitude of the dipole, p, to obtain a free energy that depends
only on the cellular orientation angle 6,

[a—2(1+ a)p, cos® 6+ (2 + a—c)p> cos* 6],

- <
fo= 2(1 +ca)

(10)

where the constant a=a(0) depends on the regularization
procedure of the self-energy. To obtain the possible steady-
state orientation angle, 6, we solve df,/ d6=0 from Eq. (10),

and find
/ 1+
0,=0, 7—7, cos™! &. (11)
2 2-c+a)p,

A rigorous stability analysis shows that the parallel orien-
tation will be stable as long as p,(2—c+a)<(l+a) in the
presence of static applied stresses. For a=0, the stability
condition yields p,(2—c)<1, while for a=1, the stability
condition turns out to be p,(3—c)<2 (as discussed in Ref.

[34]).

B. Cellular response to dynamic stress

In contrast to cell alignment in parallel with the direction
of static stress, the orientational response in the case of dy-
namically varying external stress, o=0“(1—cos w,t), is quite
different. If the time variation of the stress (proportional to
the inverse of the external stress frequency w,) is long rela-
tive to the intrinsic relaxation time, 7, of the stress fibers
and FA of the cell, cells have sufficient time to readjust and
reorganize their FA and the stress fibers in order to maintain
the optimal force condition in the adjacent matrix. In this
case, cells can orient parallel to the applied stress.

However, if the frequency is high enough so that w,7x
>1, cells do not have time to instantaneously follow the
rapidly varying, cyclic stress; they can only respond to the
average value of the sinusoidally varying stretch and then
react accordingly. Therefore, an analytical estimate of the
long-time behavior, is given by calculating the average value
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of the free energy over a cycle, the gradient of which gives
the effective generalized force acting on the system. (Aver-
aging the free energy over a cycle is equivalent to averaging
the effective force as shown in Appendix D.) This estimate
agrees with our numerical calculations in the high frequency
limit. The dynamic average of the free energy [derived from
Eq. (9) for Poisson’s ratio, v=0] over a period is

=i

+ j-‘(pa cos? 6)°. (12)

Lcos>0—p—1)2+ %cap2 +cpp, cos® 6

This gives rise to an additional energy term, ;(p, cos® 6)?,
due to the averaging of the external field over a period. This
contribution is maximal for parallel alignment but vanishes
for perpendicular alignment. Thus, for high frequency ap-
plied stresses, our analytical estimate shows that the “dy-
namical frustration” of the cell drives the system to near
perpendicular alignment with the applied cyclic stress.

As above, we first minimize the time-averaged free en-
ergy with respect to the dipole magnitude, p, to obtain the
time-averaged free energy as a function of only the cellular
orientation angle 6,

£

= ;[a— 2(1 + a)p, cos® 0+ 2+ a— c)p?l cos* 4]
2(1 +car)

1
+ Zpi cos* 6. (13)

The steady-state solution for the time-averaged dynamical
case, is derived by solving the coupled equations df?/dp=0
and df?/d6=0. This predicts three possible orientations,

6,—0, /2 cos_l\/ 2c(1+a)
g ’ ’ pdl+c[(4+3a)-2c]}
(14)

To specify the stable, steady-state orientation, we have per-
formed a stability analysis that predicts that the stable orien-
tation is the near perpendicular direction [the cos™!(-+) so-
lution above] as long as ¢ remains small (i.e., the elastic
modulus of the matrix is large enough).

The cell aligns nearly perpendicular to the applied stress
for small enough values of c. For small values of ¢, where
the cell activity dominates over the matrix forces, the contri-
bution arising from the self-energy only changes the numeri-
cal values; the scaling behavior of the angle with ¢ and the
external stress magnitude p, is still given by cos 6
~\2c¢/p, for small values of c. However, for large values of
¢, the stable state is #=0; that is, when the mechanical forces
dominate, the cell aligns parallel to the applied stress. As
noted before, there can also be stochastic forces that induce a
random alignment of the cells; our analysis can be general-
ized to include these forces, but the detailed treatment is
outside the scope of this paper that focuses on the competi-
tion of the mechanical and cell-activity forces. We note that
for finite nonzero values of ¢ (corresponding to finite matrix
rigidity) the cellular alignment is perpendicular only if the
applied stress, p,, is large enough [in terms of physical vari-
ables, P,> P*/(xE')].
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Our results show that the self-energy term does not
change the qualitative behavior or the scaling with ¢ (for
small values of c, i.e., where the cell activity dominates the
matrix forces), but only changes the numerical values of the
plots. In the remainder of the paper we, therefore, neglect the
self-energy term and set =0 for simplicity.

C. Relaxation dynamics

We predict the dynamical behavior of the system by cal-
culating the forces that act to change both the magnitude and
direction of the cellular force dipole. The dynamical equa-
tions specify a linear relationship between the temporal
change of the dipole magnitude, p, and orientation, 6, and
the generalized forces, derived from the variation of the ef-
fective free energy [41] using Eq. (9) for @=0. In the simple
relaxational model, the dynamical equations for the variables
p and 0 are given by (for a detailed derivation see Appendix
0

dp __19f
dr TR p’
do 119
—:———2—f. (15)
dt TRp (?0

Here, 7 is the relaxation time for the readjustment of the
magnitude of the force dipoles. That is, in the absence of
external stress, a cell placed from solution into an elastic
matrix in which it develops stress fibers and FA, builds up its
force from an initial value to a value determined by the op-
timal stress, in a time related to 7. For time varying applied
stresses, the cell dynamics can have a complex time depen-
dence and we shall define the scaled time 7=t/7; and the
scaled frequency w=w,7, Where w, is the frequency of the
applied stress. In Appendix C, we compare the dynamical
behavior obtained from Eq. (15) with a simplified treatment
presented in [34,35]; the two compare very well, except at
very large values of the applied stress.

Our theory involves only three model parameters two of
which are measurable in experiments at zero stress: The cell
activity y, the optimal set point stress P*, and the internal
cellular relaxation time 73. P* and 73 can be obtained by
measuring the saturation cell force and the time required to
reach saturation for cells taken from solution and placed in
elastic medium [14,19]. The experimentally controllable
variables are the magnitude P, and the frequency w, of the
external stress and the elastic modulus of the matrix E’.
Thus, the cell activity, y, remains as the only unknown pa-
rameter in the theory and it can be obtained in several dif-
ferent ways to check the consistency of the theoretical de-
scription by measuring the steady-state cell orientation angle,
0, in dynamical stretching experiments [34] and by measur-
ing the characteristic relaxation time (as in Ref. [42]); we
discuss this in detail in Sec. IV.

D. Analytical asymptotic solution and comparison
with numerics

We now present an analytical calculation of the steady-
state solution and, for simplicity, begin by rewriting the total
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free energy, f, of Eq. (9) for the case where the Poisson ratio
of the elastic matrix is taken to be zero,

fo=3pap—p—1+cppd+3cap. (16)

Here, we define ¢p=cos” 6 and the last term corresponds to
the self-energy of the force dipole where the constant a de-
pends on the regularization procedure for calculating the
self-energy (see Appendix A). The dynamical behavior of the
system is determined by the forces that act to change both
the magnitude and direction of the cellular force dipole as
discussed in the preceding section. Thus, the dynamical re-
laxational equations for the variables p and ¢ are derived
following Eq. (15):

dp _ %fz) dé_ L1, .1_ (%z)
dr <0p ©odr [)244’(l ¢) ap )’ (17

Since we focus on the case in which the temporal varia-
tion of the applied cyclic stress is periodic, the general solu-
tion of Eq. (17) can be represented by a suitable combination
of sine and cosine functions. The general solution must be
written as a sum over all modes,

o

p(n)=Re2, a,e",
n=0

B(7) =Re X, be™e, (18)
n=0

where w=w,7p and 7=t/ 7y is the dimensionless time vari-
able. A treatment of the general solution loses the analytical
simplicity. We, therefore, make the simplification (which is
justified by comparison with the numerical results) that for
high frequency cyclic stress, the solution is given by the sum
of an in-phase and out-of-phase oscillation of the dipole at
the fundamental frequency w (as well as a constant term). In
this approximation, we write

p(7)=ay+a, sin 0T+ a, cos wr,

¢(7) = by + b sin o7+ b, cos wT. (19)

The Fourier coefficients ag,a;,a, and by,b;,b, can be found
by solving six algebraic equations obtained by substituting
the solutions p(7) and ¢(7) in Eq. (17), multiplying by either
unity, sin w7, or cos wr appropriately and then integrating
the equations over one period (0 to 27/ w). We have ignored
the higher harmonics in obtaining the solutions; this is a
reasonable assumption for high frequency applied cyclic
stresses. The equations that determine a, and b, are nonlin-
ear. To obtain the other coefficients, we have expanded the
Fourier coefficients in a series in (1/w). This allows us to
obtain the asymptotic analytical solution in the high fre-
quency limit, w— o, by solving the linearized equations (for
a detailed derivation see Appendix E). In the high frequency
regime, the steady-state solutions of the force dipole, p, and
the orientation, 6, can be approximated by the constant Fou-
rier coefficients ay and b, respectively.

We compare the asymptotic, analytical solutions with the
numerical solutions of Eq. (17) for the high frequency re-
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FIG. 2. (Color online) Comparison of the analytic and numerical
predictions for the magnitude of the force dipole, p, and the cellular
orientation, (ﬁ=cos2 0, as a function of 1/w? where ® is the fre-
quency of the external, cyclic stress. Numerical plots are shown by
the points for two different values of ¢=0.001(¢) and ¢=0.01(c) for
applied stress magnitude p,=0.3 and the corresponding analytical
solutions are shown by the solid continuous curves. The inset shows
that the asymptotic steady-state solutions vary linearly with 1/w?
for high frequencies.

gime of cyclic stress. Figure 2 shows the comparison of the
analytical and numerical solutions for the force dipole, p,
and its orientation, ¢=cos® 6, as a function of 1/w? for two
different values of ¢=0.001 and ¢=0.01 keeping the applied
stress magnitude fixed at, p,=0.3 and @=0. The analytical
approximation matches the numerics quite well for high fre-
quencies, i.e., when the product of the applied frequency and
the cellular relaxation time is greater than unity (w,7z>1).
For high frequency cyclic stretch, cells do not have sufficient
time to relax and are mainly driven by the time scale of the
external periodic force. The applied stretching frequency
thus determines the cell response and this is why the first
Fourier mode is a good approximation for the dynamics.
Moreover, since the orientation does not depend on the self-
energy and also because we focus on systems in which the
cell activity forces dominate the elastic forces, we have
shown the plots for a=0 (as discussed before). However, the
analytical solutions are given for any value of « in the limit
of small values of ¢ as
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1
ag=-1 +<c(2+3a)+32c(1 +oz)>,

b0=£(1+a)<1+iz>. (20)
a w

As seen from Fig. 2, in the low frequency regime, w,7g
<1, the numerical solution begins to deviate from the ana-
lytical one; that is expected since the analytical prediction is
only valid in the limit of high frequency. In the low fre-
quency limit, cells have sufficient time to relax and therefore
respond by reorganizing themselves in specific ways; in this
case, the internal cellular relaxation time plays a crucial role
in the dynamical response. Therefore, the general solution
can no longer be approximated by a single harmonic [Eq.
(19)] at the fundamental frequency of the applied stress. In
the low frequency limit where the cell relaxation time domi-
nates the time scale of the applied force, we must consider
the higher harmonics to capture the more complex cellular
motion given by the more general solution of Eq. (18). In the
following section, we discuss this frequency dependence of
the internal cellular relaxation in more detail.

E. Characteristic relaxation time of dynamic reorientation

In the presence of an external stretch, cells readjust their
contractile activity and reorganize their cytoskeleton; the
competition of the internal cellular relaxation with the dy-
namic driving force determines the resulting cell response. It
is important to understand the interplay of these time scales
to obtain insight into the molecular mechanisms that govern
the cell-matrix interactions and hence the cellular processes.
However, this detailed quantitative understanding has not yet
been achieved. In this section, we predict how the character-
istic relaxation time that characterizes the overall orienta-
tional response and its approach to steady state [43], varies
with the frequency of the time-varying external stress.

We have carried out detailed, dynamical calculations by
solving the coupled relaxation equations using [Eq. (15)]

dp af de

- 6__ 19

, =— 21
dr dp dt p*ao @D

to predict the characteristic relaxation time as a function of
applied frequency. Here, the dimensionless time (7=1/7g) is
the ratio of the actual time and the internal relaxation time,
T, of the cell. The cyclic stress, which is the driving force
for cell orientation creates an oscillatory response in the cell;
these oscillations gradually decrease in amplitude and the
angle reaches its steady-state value. We have fit the mean
value of the orientation angle, 6(7), with the functional form
07(7)=a—be""™) to extract the characteristic relaxation
time, 7., for the cell orientation dynamics. This time is the
time required for the angle to reach its steady-state value
starting from some initial random configuration in the pres-
ence of a time-varying external stress, and a and b are con-
stants that are fitting parameters.

We have carried out this analysis for a wide range of
frequencies of the applied cyclic stress. Figure 3 shows how
the characteristic relaxation time, 7,, of the cell orientation
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FIG. 3. (Color online) The characteristic relaxation time 7, as a
function of the dimensionless frequency w(=w,7z) of the external
cyclic stress for ¢=0.01 and applied stress magnitude p,=0.3
(shown by *, blue). The corresponding steady-state value of the cell
orientation angle 6 vs frequency w is shown by the symbol O (red).
(The small dots are just a guide to the eye.)

varies with the applied frequency, w. Our theory predicts
three distinct frequency regimes as shown in Fig. 3: (i) High
frequency regime—this correspond to a regime where the
characteristic relaxation time is asymptotically constant (7,
~ constant), i.e., independent of the frequency of the applied
field; (i) low frequency regime or quasistatic oscillatory re-
laxation where the relaxation time varies linearly with the
time variation of the applied field (7.~ 1/w); (iii) intermedi-
ate frequency regime—in between regimes (i) and (ii), the
characteristic relaxation time approaches the relaxation time
that is characteristic of cell response to an external static
stress. Below, we discuss the physics of these three regimes
and their scaling relations in detail.

(i) High frequency regime: For high frequency external
cyclic stresses, cells cannot instantaneously follow the rap-
idly varying stress and are therefore, unable to establish the
optimal stress condition in the adjacent matrix. Therefore,
these “frustrated” cells orient along the perpendicular direc-
tion which is the zero stress direction for the uniaxial applied
stress, where they are unaffected by the applied cyclic stress
and can attain homeostasis (their optimal stress).

For high frequencies (w,7x> 1), cells do not have suffi-
cient time to relax; they can only respond to the time average
of the cyclic stretch. The effective cellular forces that are
governed by the time average of the applied stress can be
derived from the gradient of the dynamically averaged (over
one cycle) free energy of Eq. (13). Therefore, the effective
cellular force no longer depends on the time variation of the
cyclic stress and the characteristic time is approximately con-
stant and independent of frequency as seen from Fig. 3 (re-
gime A). This is also consistent with recent experimental
observation [42]. An estimate of the characteristic time, 7,
can be calculated analytically by deriving the time-averaged
force from Eq. (13), df%/ d(cos> H)z%pi(l+4c)cos2 6, ap-
proximated for small ¢ and a=0. If the cell energy (propor-
tional to pz) dominates over the matrix forces (proportional
to ¢p,), the value of 7, scales as 1/ pﬁ. Thus, for example, the
order of magnitude of 7. can be estimated for the values of
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¢=0.01 and p,=0.3 as 7.~ l/pi ~ 10 whereas from the exact
numerical calculations (shown in Fig. 3) 7, turns out to also
be of the same order (~30). This scaling relation for the
order of magnitude of 7, is also obeyed for the other values
of the parameter p,.

A more complete description of the scaling relations in
terms of the physical variables (of which y is not measurable
from experiments at zero stress) predicts 7.~ 7g/ )(Pi/ P*
where x has the dimension of an inverse energy; P* and P,
have the dimensions of energy; 7. and 7 have dimensions of
time (using the definitions discussed in Sec. II and where we
assume that the magnitude of P~ P* is a steady state). Thus,
knowing the cell relaxation time, 75, and the set point stress,
P*, from experiments in the absence of stress and measure-
ments of the characteristic time, 7., enable one to determine
the cell activity, x, as mentioned in Sec. III C. This can be
checked for consistency by comparing the value of y to that
obtained from the cell orientation equation (14), cos 6
~\[P*/(XPE)].

(i) Intermediate frequency regime: As the frequency of
the applied cyclic stress decreases, the competition of the
internal cellular relaxation time with the driving time scale of
the applied stress plays a crucial role in governing the dy-
namics of cell response. At low frequencies, (w,7z<1), the
characteristic time 7, increases; in this regime, cells have
enough time between oscillations of the applied stress to
reorganize their actin stress fibers and focal adhesions to es-
tablish the optimal set point in the adjacent matrix. As the
frequency of the applied stress further decreases, cells have
sufficient time to relax. They are therefore able to balance
the internal cellular forces and the matrix forces by orienting
parallel to the applied stress direction. Thus, the characteris-
tic relaxation time, 7., gradually approaches the relaxation
time of the static stress limit (shown by region B). In this
regime, where cells orient along the parallel direction, the
relaxation time can be estimated by deriving the effective
forces in the presence of static stress from the gradient of the
total free energy given in Eq. (10), as df,/ d0~2cp,(1-2p,
+¢p,) 0 in the limit of #— 0. For small values of ¢, the re-
laxation time can be approximated by, 7.~1/[2cp,(1
—2p,)]; for example, for the parameter values of ¢=0.01 and
p.,=0.3, 7.~416 and from the exact numerical calculations
(shown in Fig. 3) 7, turns out to also be of the same order
(~360). Similarly, the order of magnitude of 7, can also be
estimated for the other values of ¢ and p,. In terms of the
physical variables, the characteristic relaxation time scales as
7.~ TR/ P,/E' and is mainly governed by the magnitude of
the external stress and elasticity of the matrix. Since P, and
E' are known experimentally and 7; can be measured from
relaxation experiments at zero stress (see above), measure-
ment of 7, provides an important check of the theory.

(iii) Low frequency regime: If the time variation of the
applied stress is much slower than the cell’s internal relax-
ation time (w,7x << 1), the cell can instantaneously follow the
external stress and readjust its contractile activity instanta-
neously to establish the optimal stress in the adjacent matrix.
In this regime (shown by region C in Fig. 3), the character-
istic relaxation time 7, is proportional to the time variation of
the external stress, i.e., 7.~ 1/w. Thus, eventually the com-
petition between the cell’s internal relaxation time and the
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time scale of the external stress sets the cellular response and
hence the characteristic relaxation time of the steady-state
alignment.

IV. ROLE OF THE MATRIX IN CELL
ORIENTATION DYNAMICS

It is well established that the traction forces generated by
cells strongly depend on the nature of the substrate and the
extra cellular matrix. Numerous experiments show that cells
reorganize their cytoskeleton and remodel their contractile
forces in a manner that depends on their physical environ-
ment. To date, the detailed mechanisms that govern the in-
teraction of cells with the extra cellular matrix and the re-
lated biochemical processes during cell spreading, movement
or contraction during wound healing are not fully under-
stood. However, some insight into this process can be ob-
tained from the response of a cell to its mechanical environ-
ment, since these cell-matrix interactions can trigger
biochemical signaling that can then generate a feedback loop
[1,2,6,7]. Moreover, a topic of current cell science is how the
cell matrix elasticity dictates cell fate. Recent research shows
that the matrix elasticity governs the differentiation of stem
cells into various cell types, brain, muscle or bone [10].
These findings clearly show that even though the complex
ligand-receptor interactions between soluble and matrix mol-
ecules are important in regulating cellular function and fate,
the mechanical properties of the local microenvironment also
can play a key role.

In this section, we predict the dynamics of the cellular
orientation as a function of the Poisson ratio of the matrix.
For simplicity we take the case of &=0 and neglect the self-
energy term. In the case of homogeneous isotropic materials,
such as most gels, the Young’s modulus, E, and the Poisson
ratio, v, completely specify the elastic properties of the ma-
terial. For a perfectly incompressible material the Poisson
ratio, v=1/2. Most practical engineering materials show val-
ues of v between 0 and 0.5; for example, cork has v=0,
while most steels have v=0.3, and rubber has »=0.5
[44,45]. However, some materials, mostly polymer foams,
exhibit a negative Poisson’s ratio; if these materials are
stretched in one direction, they expand in the perpendicular
direction, instead of contracting [46,47]. Calculations similar
to those presented above show that the steady-state magni-
tude of the force dipole depends strongly on the Poisson ratio
of the matrix but the orientation is not strongly affected.

A. Is cell ativity controlled by stress or strain
in the medium?

There are many experimental observations that suggest
that cells establish the traction forces to maintain a fixed,
tactile set point that depends on the elastic properties of its
surrounding matrix [1,13-16]. This regulation is analogous
to other physiological set points, e.g., extra-cellular ion con-
centrations [1]. However, whether cellular activity is con-
trolled by the strain in the medium or by the stress in the
medium remains a puzzle so far. In other words, whether it is
the force or the deformation of the adjacent matrix, that lim-
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its the cellular force is still not clear. For example, measure-
ments by Saez and co-workers [16] of the forces that cells
exert on substrates suggest that these traction forces are pro-
portional to the substrate rigidity; in a simple elastic model,
this implies that the deformation is constant, suggesting that
the cellular forces are regulated by the deformation of the
matrix (see Sec. V for a different interpretation). However,
the measurements by Freyman et al. [15] of the macroscopic
contraction of the substrate, shows that the contractile force
developed by the cell is limited by the force rather than the
displacement of the medium. Here, we suggest that the de-
pendence of cell orientation (in response to high frequency
cyclic strain), on the Poisson ratio of the matrix can be used
as an experimental probe to distinguish whether it is stress or
strain that regulates the cellular activity [35].

B. Strain as the set point

In the model discussed previously we assumed that cells
maintain an optimal stress in the adjacent matrix as their
tactile set point and in the presence of an external stress, they
readjust their internal activity to reestablish the optimal
stress condition.

We now consider the possibility that cells readjust their
contractile activity by reorganizing the focal adhesions and
stress fibers to maintain an optimal strain, U*, in the adjacent
matrix instead of an optimal stress, P*. Moreover, we assume
that a cell whose axis is along z, regulates its contractile
activity in response to the z component of the local reaction
strain in the adjacent matrix (following arguments similar to
those presented above for the case of stress as tactile set
point in Sec. IT). The zz component of the local (i.e., located
just outside the long edge of the needlelike cell) reaction
strain, Uy, in the matrix due to a force dipole at the origin,

P;;=P5;.6;,, is obtained from Eq. (A7) as
P(1+v)
fmo 22
R a*mE (22)

where a denotes the cell size, E the Youngs modulus, and v
the Poisson ratio of the matrix. Uy >0 represents a stretch in
the adjacent matrix since the cellular contractile dipole, P, is
negative. At this stage, we assume that the cell reorganizes
its internal cellular processes so that the local reaction strain,
Uy, is always maintained at the optimal strain value, U*.

If the matrix is subjected to an external stress, of’,, applied
at an angle 6 relative to the cell axis (taken to always be
along z as illustrated in Fig. 1), then the zz component of the
applied strain in the adjacent matrix is [40]

U = (VE)o“[(1 + v)cos? 0 v]}. (23)

The optimal strain in the matrix (set-point condition) is
achieved when the sum of the local reaction strain and the
component of the externally applied strain along the cell axis
is equal to the optimal strain, i.e., (Ug+U%)=U". Any devia-
tion from this optimal strain condition gives rise to internal
cellular forces that will tend to reestablish this set point;
those forces are derived from the variation of the effective
free energy
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1
Fc,n = EXY(U?Z + U;? - U*)Z
o P(1 + 2
= &(—[(1 + v)cos? 60— v] - ¥ - U*> ,
2\ FE a’mE

(24)

where y, is the measure of cell activity and has the dimen-
sion of energy [48].

In addition to the internal, active cellular forces the cell is
also subject to mechanical forces exerted by the matrix. In
the presence of an external tensile stress, of’j, the cell-matrix
interaction energy, F,,, is given by Eq. (8), derived in Sec. II.
Thus, the total generalized force acting on the system can be
derived from variations of the total effective free energy, F
=F,.,+F, with respect to changes in both the dipole magni-
tude and direction. We rewrite the total free energy F in
dimensionless units as f=F/(x,u*?). In addition, the dimen-
sionless local reaction strain, u., due to the dipole, P, is
scaled as u,=P/(E'U*), where E'=Ema’® is the effective
elastic modulus. As before, we define the applied stress mag-
nitude o as P,=c“ma® and P, is then scaled as u,
=P,/(E'U*), where the dimensionless quantity u, represents
the applied strain scaled with respect to the optimal strain,
U*. We also define the dimensionless parameter c,=E'/ x;.
This is a measure of the competition between the forces due
to cell activity and those due to the matrix elasticity.

We now predict the cellular orientation, 6, in the presence
of dynamic stress, o=0"(1-cos w,t), where w, is the fre-
quency of the applied stress. To understand the physics more
clearly, we first consider the case where active cellular forces
are much larger than the matrix forces so that the cell forces
control the dynamics of the system. If the time variation,
1/w,, of the external cyclic stress is much faster than the
cellular relaxation time, 7, i.e., if w,7,>> 1, then cells cannot
instantaneously follow the quickly varying external stress
and the long-time solution is obtained by averaging the
forces (or equivalently the free energy [48]), over a cycle.
The average of the cell energy, F.,, over a cycle is written in
dimensionless units as

(fem) = %{ua[(l +v)cos? - v]—u (1 +v)-1}>

+ i{ua[(l + v)cos® - v]}>. (25)

The second term in Eq. (25) arises from the averaging of the
external field over the cycle and adds a positive contribution
to the total free energy, compared with the case of static
strain. Using this expression, we derive the net, generalized
force that acts on the system by calculating the gradient of
the effective free energy, (f, ), with respect to 6 and u,.. The
steady-state value of u.=u is obtained by solving the equa-
tion f.,)/du.=0 and then substituting the value of u. in
Eq. (25). We thus obtain the free energy as a function of only
the orientation angle, 6, as

(fom) = $luL(1+ v)cos® 6— v]}. (26)
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We now solve the equation Kf,,)/d0=0, to predict the
possible steady-state values of the cellular orientation, 6,

™ | v
—,cos —_—.
2 (1+v)

For the case of »>0, the matrix is stretched in the direction
of the uniaxial stress and is compressed in the perpendicular
direction; in between these two directions, there is a region
of zero strain given by the cosine expression of Eq. (27).
This is the physical reason that the cell chooses the zero-
strain direction given by Eq. (27) when v>0; when there are
no strains, the cell is not frustrated by having to adapt its
internal activity to the instantaneous, dynamically varying
strain at a time scale that is too fast for its natural response.
It thus chooses a direction where there is no applied strain
and where the cell can establish its contractile machinery in a
static manner to achieve the optimal strain, with no dynami-
cally induced frustration. When »<<0, the matrix is expanded
in all directions and there is no direction of zero strain. The
cell does its best and chooses the direction of the minimal
strain, perpendicular to the applied stress. Mathematically, a
stability analysis shows that the stable orientation for v<<0 is
&= g , 1.e., the perpendicular direction but for 0< v=<0.5, the
steady-state orientation is determined by #=cos™!y (1:1;) the
direction of zero strain.

We note that our prediction of the steady-state cellular
orientation, €°, in the presence of dynamic stress as a func-
tion of v turns out to be the same as suggested by the authors
of Ref. [36]; however, our prediction is based on a model
that takes into account both the cell and matrix forces and
that can be generalized to treat both the dynamics and
steady-state response.

=0, (27)

C. Stress as the set point

To treat the case in which the stress determines the cellu-
lar set point and the dependence of the cell orientation on the
Poisson ratio, we recall our theory of “optimal stress as set
point” which was discussed in detail in the preceding sec-
tions. At first, we consider the limit of ¢ <<1 where the cell is
governed by the internal cellular forces and neglect the ma-
trix forces. In the presence of a high frequency dynamic
stress, we obtain the cellular free energy from Eq. (7) by
averaging over a cycle,

Y =1[p, cos* - B(w)p — 112+ Lp? cos* 6.
(fe) =3lPa P P

The steady-state, cellular orientation is predicted by solving
Kfes)! 30=0 and K, )/ Ip=0 and the solution is ¢=7. This
state of perpendicular orientation is the zero stress direction
for an applied tensile stress. Since the cell cannot instanta-
neously follow the quickly varying, external stress, it cannot
establish the (time-varying) optimal stress in the adjacent
matrix. This frustration effect leads to the fact that for high
frequencies, the cell orients in the perpendicular direction to
avoid the external stress; in the perpendicular direction there
is no time-varying stress and the cell can easily establish its
dipole strength to match that of the set point.

In this scenario, where the matrix forces acting on the cell
are negligible compared with the internal cellular forces, we

(28)
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FIG. 4. (Color online) Numerical calculations of the cellular
orientation, 6, as a function of the Poisson ratio, v, of the matrix for
the case of strain as the set point for two different values of ¢
=0.001 (*) and 0.01 (O) with an applied strain magnitude u,=0.3
and frequency w=10 using the scaled units discussed in the text.
The solid line shows the orientation predicted analytically for the
case where the matrix forces are negligible. The small dots are just
a guide to the eye. The inset shows a similar plot of 6 as a function
of v for the case of stress as set point for ¢=0.001 (x) and 0.01 (O)
with an applied stress magnitude p,=0.3 and scaled frequency w
=10. The solid line shows the orientation predicted analytically for
the case where the matrix forces are negligible. For values of ¢ (for
the same values of p,) of the order of unity, the cell orients parallel
to the direction of the applied stress.

find that in the case of “optimal stress” as the set point, the
stable cellular orientation is independent of the Poisson ratio
of the matrix, v. This is in contrast to the case in which the
set point is determined by the strain where we found that the
steady-state cellular orientation depends on v as 6,
=cos‘1\%, as discussed in the preceding section. Thus,
measurements of the orientation angle as a function of the
Poisson ratio of the matrix differentiate between cells whose
set point is governed by optimal stress or by optimal strain.

In Appendix F, we present calculations of the steady-state
orientation angle for the cases of both stress and strain as set
points and include the effects of the matrix deformation en-
ergy. When the deformation forces are small compared with
the cell activity forces, i.e., when the parameter ¢ is small,
the results are qualitatively similar to the case considered
above in which the matrix forces are neglected. Figure 4
presents some representative results that show that for the
case of strain as a set point, the steady-state angle for high
frequency, dynamic stretch is much more strongly dependent
on the Poisson ratio compared with the case of stress as a set
point as shown in the inset of Fig. 4. For the cases of strain
as set points, we predict a transition in the steady-state 6
solution as the Poisson ratio v varies from negative to posi-
tive values. The approximate analytical solution of € is de-
rived in Eq. (F3) and is given by the inverse cosine of the
function f(v,u,,c,) in Eq. (F2). However, for negative values
of v, where f(v,u,,c,) becomes imaginary, the stable steady-
state solution is then given by #=m/2. The transition in 6
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solution [from 7r/2 to cos™! f(--+)] as v varies from negative
to positive values gives rise to the abrupt change in the slope.

V. SUMMARY AND DISCUSSIONS

The comprehensive theory presented here uses an effec-
tive free energy that includes terms due to both internal cel-
lular regulation as well as the matrix deformations to predict
the forces that determine the dynamics of cellular orientation
in the presence of static and cyclically varying external
stresses. Our theory predicts many features observed in ex-
perimental measurements of cellular forces and orientation:
(i) It shows good qualitative agreement with the experimen-
tal observation of nearly parallel cellular alignment in the
presence of static or quasistatic stress [19-23] and (ii) nearly
perpendicular alignment for quickly varying external stresses
[24-32]. The competition of the cell activity and the matrix
forces determines the steady-state cellular orientation. At low
frequency, cells have sufficient time to readjust their contrac-
tile activities by reorganizing the cytoskeleton and thus bal-
ance the active cell forces by matching their internal forces
to optimal set point in the matrix. Since the internal forces
are balanced, the cell orientation is then determined by the
matrix forces that cause cells to orient parallel to the external
stress field. On the other hand, at high frequencies of the
applied stress, the cell cannot follow the quickly varying
stress to establish its set point; the forces due to the cellular
activity thus tend to orient the cell perpendicular to the stress
direction so that it remains unaffected by the external stress
and can reach homeostasis in the adjacent matrix. Of course,
the matrix forces also contribute to the value of the steady-
state orientation; for the situation treated here, the matrix
forces are relatively small and the cells orient nearly perpen-
dicular.

Our theory also predicts the characteristic relaxation time
(the time required to reach to the steady-state orientation) as
a function of the frequency of the applied cyclic stress. The
relaxation time exhibits three distinct frequency regimes of
the applied cyclic stress. Indeed, a recent experiment [42]
shows qualitative agreement with our predicted frequency
dependence of the characteristic relaxation time for the high
frequency regime. We have also identified different scaling
regimes of the characteristic relaxation time as a function of
the experimental parameters involved in our theory, and
these can be used to check the consistency of the theory.

It is important to note here that there are only three theo-
retical parameters in our model: The cell activity y, the op-
timal set point stress P*, and the cellular relaxation time 7.
The applied stress, P,, the matrix elastic modulus, E’, and
the frequency, w,, are experimental variables. One can easily
measure the cellular relaxation time and the set-point stress
in the absence of stress, by taking cells from solution and
setting them in the matrix. Cells slowly spread in the matrix
and establish a contractile force that reaches a saturating
value P* after a time, 74 [14,19]. Thus, this leaves only one
theoretical parameter, the cell activity, y, to be determined
and we suggest several experiments that can be compared
with our theory to get a consistent value for y. First, y can be
found from dynamical stretching experiments by measuring
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the steady-state cell orientation angle [Eq. (14), cos 6
~N(P*/P,)/(xE")]. x can also be obtained from the charac-
teristic relaxation time measurements [ 7, ~ 75/ ()(Pg/P*)] in
the high frequency regime; from these two measurements,
one can check the consistency of our scaling predictions as a
function of .

Interestingly, in the presence of high frequency cyclic
stress, the cell orientation is a nonlinear function of the ap-
plied stress, P,, and we also predict the threshold value of
the external stress, P,~ P*/(xE’), above which the cell ori-
ents towards the perpendicular direction. The existence of a
threshold magnitude has also been observed in experiments
[42,49,50]. However, there can also be stochastic forces that
induce a random alignment of the cells; our analysis can be
generalized to include these forces, but the detailed treatment
that focuses on the competition of the mechanical and cell-
activity forces is outside the scope of this paper.

Furthermore, we predict the variation of the steady-state
cell orientation as a function of the Poisson ratio of the ma-
trix for the two possible scenarios of “optimal strain” and
“optimal stress” as set points that regulate cell activity. We
show that the steady-state cellular orientation has a much
stronger dependence on the Poisson ratio of the matrix for
the case of optimal strain (for »>0) compared with the case
of optimal stress, as illustrated in Fig. 4. This difference can
be used to distinguish cells whose mechanosensitivity is gov-
erned by optimal strain from cells whose activity is con-
trolled by optimal stress. We note however, that the authors
of Ref. [51] have suggested that for soft and thick substrates,
the size of focal adhesions may be proportional to the elastic
modulus of the substrate and that this may explain the results
of [16] even if the set point is governed by stress and not by
strain.

It is worthwhile to point out that for simplicity, we have
presented the numerical results without the self-energy term;
however, our analytical stability criteria for cell orientation
do include the self-energy term for both static as well as
dynamic stresses. We have shown that the self-energy just
shifts the numerical values but does not change the qualita-
tive behavior or the scaling regime where the cell activity y
dominates the matrix forces [c=1/(yE') <1]. We have also
discussed the regularization procedure to calculate the self-
energy in Appendix A. In addition, Appendix B shows that
the effective free energy that was used to derive the forces
acting on the system can also be derived from symmetry
considerations. Furthermore, the dynamical equations pre-
sented here and derived in Appendix C, are more general
than the simplified equations of Refs. [34,35] in which the
factor 1/p? that appears in the dynamical equation for the
orientation angle was replaced by its steady-state value of
approximately unity.
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APPENDIX A: ELASTIC ENERGY OF FORCE DIPOLES

The stress and the strain produced by the force dipole in
an isotropic, elastic medium have been described in detail in
the literature [37,38,40,52]. Here, for the sake of complete-
ness, we outline these results. The linear, second-order dif-
ferential elastic equation for the displacement, i, of an infi-

nite elastic medium at a distance 7 [40] due to a force f
localized at the origin is

1 f)

Au+ V[Vu(r)]=-—",
1-2v 7

(A1)

where v and u are the Poisson ratio and the shear modulus of
the elastic medium, respectively. In general, Eq. (Al) is dif-
ficult to solve because the second term couples the various
components of the displacement vector. However, the equa-
tion can be solved by introducing the Green’s function for a
point force fi(r)=f;8(F—r"). The Green’s function for such a
force in a three-dimensional, elastic infinite medium is
known as the Thomson Green’s function [40,52] and is writ-
ten as

1+v
8TE(1 —v)|r— 7|

Gij(F_;’)= |:(3_4V)5ij

+<n—dxq—r9] A

-7

The elastic displacement fields for a more complicated force
distribution are obtained from the convolution of the Green’s
function tensor with the force density (force per unit volume)
[36-38,40],

u,(r) = f dr' Gy (r,/)f(r'), (A3)
where the subscripts refer to the vector components and the
displacement field, u, at r is due to a force distribution den-

sity, f, centered at r'. The force dipole, P;j, is defined
[36-38] as the second moment of a spatially distributed force

density, f(7),

When the force distributions are expanded as force dipoles,
the displacement field u;(r) at point 7 due to a dipole P}, at
point 7' is written [38,40,52] as

u(r) =Gy p(r,r') Py, (AS)
where the index after the comma denotes derivative of the
Green’s function with respect to position. Moreover, we can
find the components of the strain tensor, u,-j(F), from the dis-
placement using the relation

1(du; ou;
L[, ) "
2 (9"] ﬁri

Thus, the strain tensor is given by Egs. (A5) and (A6),
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uij(7) = 5[ Gy (F.F) + Gy pr (7,7 1P, (A7)

where

Jd d -
——Gulr=r')

Giri=——
I an&.xl

(A8)

and there is an implied summation over repeated indices.
Note that for translationally invariant systems, G;; ;. (r,7")
=G (F—r")==G; (7, 7") [38]. We note that the symmetric
definition of the strain as a sum over two Green’s functions
in Eq. (A7) corrects the general formulas presented in
[37,38]. The symmetrization also gives rise to quantitative
changes in the Poisson ratio dependence of the self-energy.

1. Interaction of dipoles with external stress

In the absence of any external forces, the elastic deforma-
tion energy [40] of an infinite medium due to a single force
dipole is derived from the strain field using Eq. (A7). This
energy is also termed as the self-energy of the dipole and is
given by

1
US=EfCijkluij(F)ukl(;)d3r

P2
2Ema’

a(v), (A9)

=%f0-ij(;)uij(;)d3r=

where E is the Young’s modulus, v is the Poisson ratio of the
matrix. The Poisson ratio dependent function a(v) and its
precise form depends on the regularization procedures to
eliminate short distance singularities and is discussed in the
next section [53].

We now derive the interaction energy of the force dipole
with an external applied strain. This is analogous to the in-
teraction of an electric dipole with an external electric field.
We focus on the dilute limit, in which the depolarization
fields [54] due to all other dipoles in the system are negli-
gible; this may not be the case for systems with a high den-
sity of cells. For an applied tensile stress, 0¥, the total strain
in the medium is ul-sz(ufj+u?j), where ufj is the strain due to
the force dipole and uf‘, is the strain due to the external stress.
The total elastic deformation energy can be calculated by
considering the work to increase the total strain in the me-

dium from zero to a value of ug [37],

1 1
F,= EJ CijkzuiTj(;)ulg(F)d3r— 5 f C;jkl“Z(F)MZI(;)d3F-

(A10)

The second term in Eq. (A10) represents the work done by
the external force to maintain the applied stretch, ul“j, it is not
relevant to the forces that act on the cell and does not couple
to the cellular strain [37]. We thus subtract this term in our
accounting of the effective energies that give rise to forces
that act on the cell.

Thus, the relevant, elastic deformation energy in the pres-
ence of an external strain is
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1 ‘ . )
fn EJ Ciguat (Dt )dr + f Cot (P (P)r

=Us+U,. (A11)

The first term in Eq. (A11) represents the self-energy, Uy, of
the force dipole [as discussed in Eq. (A9)] and the second
term represents the interaction energy, U, of the force dipole
with an external, tensile strain, ul“j Now, integrating the in-
teraction energy term by parts yields

UI = f uijijkluzldSr = f del/l?Cijklaluz - f M?Cijkl&jﬁluid3r,
(A12)

where the first term is a surface integral. In the presence of
an external stress, ofj, the boundary condition yields
Cju(uiy+u)n;(r)=ofn;(r), where n is the outward normal
of the surface. We define the uniform strain, u?j, due to the
applied stress from, of;n;(r)=Cijqujn(r). For a dilute sys-
tem, the surface forces due to dipoles are negligible, so that
Cijuuyn;(r)=0. This yields a vanishing surface integral [first
term of Eq. (A12)] at the boundary. Moreover, mechanical
equilibrium ensures that the body force due to the dipole,
f:(7), is balanced by the internal restoring force, 03 j- This
leads to the mechanical equilibrium condition, oy ;
=Cjd;0u;=—f,(r). Setting this expression in the second
term of Eq. (A12) we find

U= f ulfidr. (A13)
For a constant applied stress, the displacement, uf‘:rju?j,

where u{; is the constant strain. Using the definition of the
force dipole, Eq. (A4), we thus find

U1=Piju?j. (A14)

The interaction energy is, thus, proportional to the product of
the force dipole and the external strain. This adds a negative
energy contribution (since P<0 and u{;,>0) to the total en-
ergy that is minimal when the dipoles are aligned parallel to
the stretch direction. The physical origin of the mechanical
forces that tend to align the force dipoles parallel to the ex-
ternal strain is the fact that the external stretch expands the
matrix, while cells that are parallel to the strain contract the
matrix, thus reducing the overall strain and lowering the ma-
trix deformation energy.

2. Self-energy

The self-energy of a dipole located at the origin of an
infinite, elastic medium is given by Eq. (A9). Since the
strains due to a dipole at the origin vary as 1/r°, the self-
energy, which is an integral of the square of the strain mul-
tiplied by the appropriate elastic constant, diverges [53]. One
must regularize this divergence by a short distance cutoff. In
our previous work [34,35], we removed the divergence by
assuming that the cell occupied a finite volume near the ori-
gin and that the strained medium was excluded from this
volume. A technical aspect of this regularization is corrected
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below. In addition, other regularization schemes that do not
require the construction of a “hole” in the medium are dis-
cussed.

The technical correction to [34,35] is due to the fact that
those papers did not use the properly symmetrized form of
the strain in Eq. (A7). Only the first term (without the factor
of 1/2) was used. This makes no difference for the diagonal
components of the strain tensor that enter the cell activity
energy and for the interaction of the force dipole with the
external force. However, the off-diagonal components of the
strain tensor that enter the self-energy are modified by the
symmetrization. This results in the fact that the Poisson ratio-
dependent prefactor, a(v) is modified from the value given in
the previous work [34,35],

a(v)=(1+v)[15+2v(- 13+ 8»)[15(v-1)7].
(A15)

In that work, the integrals were performed in spherical coor-
dinates; since the strain varies as 1/7°, we introduced a short-
distance cutoff, related to the cell size, a, which was taken to
be a/(2'3). The correct value of a(v) in the properly sym-
metrized model is

a(v)=(1+v)[9+2v(-7+5v)[30(r-1)*], (A16)

where, the integration cutoff is taken to be a. This, of course,
makes no qualitative difference in the predictions of cell ori-
entation.

We begin by noting that we consider a force dipole asso-
ciated with a needlelike cell whose focal adhesions and stress
fibers are aligned along z, so the dipole has only zz compo-
nents. However, to derive the self-energy, the integrals were
performed in spherical coordinates with a short-distance cut-
off, related to the cell size, a. However, this approximation
corresponds to a picture in which the cell creates a “hole” in
the matrix which introduces a boundary at »r ~a. To perform
the integration over an infinite medium, boundary forces may
have to be taken into account and this may require more
detailed modeling of the cellular forces.

In addition, we note that to get a more accurate expression
for the dependence of a(v) in the self-energy, one should
probably integrate over a needlelike geometry rather than a
sphere. This would be more consistent with our treatment of
an elongated cell whose only force dipole component is P._,.
Moreover, there are many possible regularization schemes
that can be used to treat the short distance cutoff (e.g., sharp
cutoff in wave-vector space [53], Gaussian force dipole dis-
tribution, etc.). The precise value of a(v) may depend on the
details of these procedures and their relation to the cell
shape.

However, these details are not crucial for our predictions
of cell orientation. First, the self-energy does not couple to
the orientation: It is a positive energy contribution that gives
rise to a force that tends to diminish the magnitude of the
force dipole, but is independent of its direction. Even if the
mechanical forces were larger than the cell-activity forces,
the self-energy only influences the physics indirectly, via the
magnitude of the force dipole. Moreover, because cells po-
larize nearly perpendicular to the direction of rapidly varying
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stresses, the mechanical forces (that tend to align the cell
parallel to the external stress) must be secondary compared
with the cell-activity forces. This paper thus considers the
limit in which the cell-activity forces dominates the matrix
elastic force. We therefore neglect the self-energy term in the
numerical calculations of cell orientation used in the paper.
We note that, in our theory, the interaction energy of the
force dipole with the external applied stress (that linearly
couples the external stress and the dipole) is crucial in deter-
mining cell orientation for the case of applied static stress.
The competition of this interaction energy term with the cell
energy eventually determines whether parallel or perpendicu-
lar cellular alignment is the minimum energy state.

APPENDIX B: FREE ENERGY FROM SYMMETRY
CONSIDERATIONS

The free energy associated with a force dipole in the pres-
ence of an external stress can be written in a phenomenologi-
cal manner using symmetry considerations. Here we con-
sider the special case of a needlelike cell whose long axis is
along the 7 direction and at an angle @ relative to the z axis of
the matrix. In the main body of the text we have inter-
changed the coordinate system of the cell and the matrix but
that does not affect the form of the free energy. We also limit
ourselves to the special case in which the stress fibers are all
oriented along the long axis of the cell. Thus, the only non-
vanishing element of the force-dipole tensor associated with
the cell, is (in spherical coordinates where the tensor ele-
ments are denoted by rr, r, r¢, r, 66, etc.), the one asso-
ciated with the tensor index, rr. We can also represent this
tensor by the two vectors for the cell axis and the force,

which for our special case are ry=(ry,0,¢) and f,
= (fO ’ 0’ d))

Since the force dipole is composed of two equal and op-
posite forces, fo and —fo, located at the two opposite ends of
the needlelike cell, 7, and -7, the free energy must be an

even function of the product of f,, and 7. Thus, as long as we

enforce this symmetry, we can consider the two vectors, fo
and 7, instead of the force dipole tensor that is composed of
these two vectors.

The stress tensor, T, for a uniaxial stretch applied in the Z
direction and perpendicular to the surface of the matrix
whose normal is in the Z direction is a 3 X3 matrix (with
elements xx, xy, xz, yx, yy, etc.) whose only nonvanishing
component is zz. We denote the magnitude of this component
by T. It is equal to the trace of the stress tensor, which is of
course a scalar.

We now write the vectors 7, and f;, in rectangular coordi-
nates using the usual transformation from spherical to rect-

angular geometry and then form the scalar invariants of 7, f;
and the stress tensor as described above. The vector that
corresponds to the long axis of the cell is written in rectan-

gular coordinates as
Fo = ro(cos ¢ sin 6,sin ¢ sin 6,cos 6). (B1)

The equation for the force vector is similar with r, replaced
by f,. We note that in our model of needlelike cells, f,, and 7

031923-13



RUMI DE AND SAMUEL A. SAFRAN

are parallel so that their cross product is zero. Assuming that
both the force and the stress are small, we write the free
energy up to quadratic order (in either quantity, but not in
both) in terms of the scalar invariants,

Fp=a0+alfo'f0+azfo~T-f0+a3}70~T-}70 (BZ)

+ay(ry 'fo)2+asfo'f0+%(70 -T- ;0)2+G7T(70'f0),
(B3)

where the last term is the trace of the tensor T multiplied by

the scalar (7)-f,) There are two additional terms that are
proportional to the trace and the square of the trace of the
stress tensor. However, these two terms are not coupled to
the cell shape or force and can therefore be omitted. For the
case we consider, the other invariants—the determinant and
the sum of the principal minors—vanish.

The symmetry based, phenomenological free energy, F),,
has the same form as the free energy written in the text [Eq.
(9)] from more physical arguments that include the cell regu-
lation of the force dipole and the matrix elastic energies.
Note that in both treatments, the stress enters with the factor
cos? 6.

APPENDIX C: GENERAL RELAXATION
DYNAMICAL EQUATIONS

Symmetry considerations can also be used to derive a
relationship between the dynamics of the various compo-
nents of the cellular stress. For simplicity, we assume that the
cell shape and size is fixed, so that the magnitude of 7 is
constant. For our model of a needle-shaped cell, 7 is parallel

to the force f; so that we need only determine the angle of f;,.

We write a relaxational equation for the force f, that as-
sumes, for simplicity, a single time scale; the time derivative

of f is proportional to the variation of the free energy with
respect to f,

ohy__ LoF -
07t Foafo

Our assumption of a single time scale means that in rectan-
gular coordinates, df,;/dr is not coupled to JF/df; ; unless

Jj=i.

Writing the dynamical equation in spherical coordinates
for the case described above where f is parallel to the 7,
direction, we find

ﬂfo Afofo) . fo 0
2o 00 0 1y 20 2
ot ot 0y Ty, (€2)

The last term on the right-hand side can be written as

10220 = fodsin 672 + £y (3

—= sin 0— + fo0—.

Oor 70 a o

The term % can be written in terms of the gradient in spheri-
0

cal coordinates,
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OF _OF .1df . 1 OF
S =ry ot -+ ; .
af() (?fo fo J60 f() Sin 05¢

Since the free energy is independent of ¢, there are no
gradients of F in the (2) direction. Thus, %‘?:0. Equating the
vector components of the terms involving the time deriva-
tives and the terms involving the derivatives of the free en-

ergy yields

(C4)

Yo__1IF
a - Tafy
a0 1 10F
=-S5 (C5)

Moreover, we have assumed that the cell shape and size is
fixed, so that r, is constant. Thus, the relaxation equations of
the dipole magnitude, p(=fyry) and the cell orientation, 6, is
given as

oP__1IF
o TydP’
90 1 1 9F
—=——=, (Co)
ot T()P d0

where 70=r3/ 7y. Here F and P have dimensions of energy
and ¢ is the time; thus, the dimension of the rate constant 7,
turns out to be time devided by energy. We, therefore, define
a scaled relaxation time 7x=7,P* which has the dimensions
of time.

We note here that the dynamical equations that determine
the relaxation of the magnitude of the force dipole, P, and its
orientation, 6, given in Refs. [34,35] were expressed in a
simplified form under the assumption that P reaches its equi-
librium value ~P* (in scaled units p~ 1) much faster than
the cell orientation angle 6. This amounts to replacing the
factor 1/P? in Eq. (C6) by 1/(P*)? or equivalently by rede-
fining the relaxation time of cell orientation 6 as 7,
~[7x(P*)?] as given in Refs. [34,35]. For static stresses, the
steady-state solution is independent of the details of the dy-
namical equations and both treatments yield identical results.
However, even for time-dependent stresses, the steady-state
solutions are qualitatively similar and do not depend in an
important manner on whether one replaces the factor of 1/P?
in Eq. (C6) by 1/(P*). In fact, this condition is always sat-
isfied in case of high frequency cyclic stresses as well as for
cases in which the magnitude P, of the external applied
stress is small enough so that P reaches ~P* in the steady
state. To highlight this, we compare in Fig. 5 the cellular
orientation, 6, calculated from the simplified dynamical
equations in Refs. [34,35] as well as from the more general
dynamical equation given in Eq. (15) as a function of fre-
quency o for two magnitudes p,=0.2 and 0.4 of the applied
stress (in the scaled units discussed in Sec. II). As seen from
the figure, the steady-state values of # remain the same for
the high frequency regime and its qualitative nature is also
unaffected for the low frequency regime. For very small val-
ues of ¢ and p,, there is virtually no difference between the
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FIG. 5. (Color online) This plot shows a comparison of the
dynamical solution of the cell orientation € as a function of fre-
quency w(=w,y) for the simplified [in which the factor of 1/p? in
Eq. (15) is replaced by unity] and general relaxation equation [Eq.
(15)] for two different values of the applied stress magnitude p,
=0.2 (shown by the symbols O and %) and p,=0.4 (shown by the
square and plus symbols) keeping c=0.001. The deviations between
the two theories can be seen for large applied stress magnitude p,,.
(The dotted lines are just a guide to the eye.) The inset focuses on
the steady-state solutions of 6 as a function of w for the regime
highlighted in the square box. It shows that € changes smoothly
with o and there is no sharp transition.

simplified and more general dynamical equations. For low
frequencies, cells orient towards the parallel direction; as the
frequency increases cells orient towards the perpendicular
direction. This occurs smoothly as the frequency is varied
from low to high values as seen from the plot of the orien-
tation for large values of p, (=0.4). Also, for smaller values
of p, (=0.2), # changes smoothly with @ and there is no
sharp transition as illustrated in the inset.

APPENDIX D: DYNAMICAL AVERAGE OF TOTAL
FORCE OVER ONE CYCLE TO PREDICT
LONG-TIME SOLUTIONS

The dynamical behavior of the system yields a linear re-
lation between the temporal change of the dipole magnitude,
p, and the orientation angle, 6, and the forces that are derived
from the variation of the effective free energy, f (for the case
of zero Poisson’s ratio),

f= %(pa cos> 0—p—1)*+ %cozp2 +cpp,, cos® 6,

d

01—f=— (p,cos’> 6—p—1)+cap +cp, cos® 0,

P

Jf , .

20 =L~ PalPacos™ 0=p—1) = cpp,Jsin26.  (D1)

However, in the presence of a rapidly varying cyclic external
stress, 0“(1—cos w,t), for the case that time variation, 1/w,,
of the applied stress is short compared with the internal cel-
lular relaxation time, 7, the long-time solution is estimated
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by averaging the effective forces over a cycle,
J 27w 9
)2 (2e
dp 2w ), dp
J 27w 9
9 -2 f (—f>dt.
a0 2m), a0

The steady-state solutions are then given by the solutions of

the coupled equations <§£)=0 and <§§>=0 as 6,—0,m/2,
_ ) . L
cos™y/ pa{1+f[c(41++3(2)—2c]}' This shows that the derivation of the
steady-state orientations obtained by averaging the force
over a cycle is equivalent to that obtained from averaging the

effective free energy over a cycle.

(D2)

APPENDIX E: ANALYTICAL ASYMPTOTIC SOLUTION:
CALCULATION OF FOURIER COEFFICIENTS

The dynamical relaxation equations for the variables p
and ¢ are (see Sec. III D for detailed discussions)

dp 1 (afé)
b b = _+ - b
g, &, 7) i\

_4 L - %)
go(p. 1) = +7Rp2[4¢(1 ¢)]< o) (E1)

where f¢=%(paq§—p—1)2+cpup¢+%cap2 is the total effec-
tive free energy. For high frequency applied cyclic stress, the
solution can be assumed as the sum of a sinusoidal oscilla-
tion at the fundamental frequency w described as (discussed
in Sec. V in detail)

p(7) =ay+a; sin w7+ a, cos w7,

¢(7) =by + b, sin w7+ b, cos wr. (E2)

The Fourier coefficients a,,a;,a, and by,b;,b, can be found
by solving six equations that are obtained by substituting the
solutions p(7) and ¢(7) in Eq. (E1) and then integrating these
equations over one period (to 27/ w) after multiplying by
either unity, sin w7 or cos w7 appropriately. Thus, the six
algebraic equations yield

27w
f g,(p,$,7)d7=0,

0

27w
f gp(p, ¢, 7)sin w1d7=0,
0

27w
f gp(p, b, 7)cos wrdT=0,
0

2w
J g4(p.¢.7)d7=0,

0

27w
f 24P, b, 7)sin wrdT=0,

0
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27w
f g4(p.d.7)cos wrdT=0. (E3)
0

In the high frequency regime of the applied cyclic stress,
the first Fourier mode is a good approximation for the dy-
namics and therefore the higher harmonics are ignored in
obtaining the solutions. Moreover, the Fourier coefficients
are expanded in a power series of (1/w) (with the appropri-
ate symmetry) as

Ao app  dy: Ay Aoy
a0=a00+_2’ a1=_+_’;9 aZ=_2+_4’ (E4)
w 0w W w w
and similarly
byy by, b, by, by
b0=b00+_2, b1=_+_—;, b2=_2+_4. (ES)
w 0w W w w

The equations for ag, and b, are nonlinear. For the other
Fourier coefficients, they are found in the high frequency
limit, by solving the linearized equations (E3) and equating
the coefficients of the equal powers of 1; In the high fre-
quency regime, the steady-state solutions of the force dipole,
p, and the orientation, €, can be approximated by the con-
stant Fourier coefficients a, and b, respectively.

APPENDIX F: COMPETITION OF MATRIX FORCES
WITH THE CELLULAR FORCES FOR THE CASES
OF BOTH STRAIN AND STRESS AS SET POINTS

In Sec. IV, we have predicted the orientation of cells as
governed by the cellular forces alone. In this appendix, we
derive the steady-state orientation including the effects of the
mechanical forces that are due to the matrix elasticity [de-
rived from Eq. (8) in scaled units for a=0]. In this case, one
derives the total force acting on the system from the varia-
tion of the total effective free energy. We first examine the
case of “optimal strain” and show how the cellular and me-
chanical forces compete to determine the steady-state value
of the cell orientation. For high frequency, external dynamic
stress, i.e., when w,73> 1, we predict the long-time solution
by averaging the total effective free energy over a cycle, to
yields

(fo) = Hu[(1+ v)cos® 0 v] —u (1 +v) — 12
+ Hu[(1+ v)cos® - v]1 + cuu [(1 + v)cos® - v].
(F1)

The second term {iui[(lﬂz)cos2 6-v]*} of Eq. (F1) adds a
positive contribution to the effective free energy that van-
ishes for perpendicular alignment and is maximal for parallel
alignment. This term tends to drive the system towards per-
pendicular alignment compared with the matrix forces that
drive the cell to the parallel orientation. Therefore, the equi-
librium cellular orientation is determined by the competition
of these two forces. If the strength of the applied external
strain, u,, is large enough compared with ¢, (increasing c;
represents an increase in matrix forces) the system is driven
towards the perpendicular direction. Thus, the ratio (c,/u,)
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determines the steady-state cellular orientation (for fixed val-
ues of v).

The steady-state solution is obtained by solving the
coupled equations &f,)/30=0 and &f,)/dp=0. These pre-
dict the possible cellular orientations as

6=0, g,cos_1 f(v,ug,cy), (F2)

where f(v,u,,c,) is a function of v, u,, and c, that can be
approximated as

Y . A (F3)
f (1+v) ua(1+v)\/v(1+v)

in the limit of (¢,/u,) <1. A stability analysis shows that the
stable orientation is given by the cosine solution when
(cy/u,)<1. However, if the applied field is too small, the
driving force for the perpendicular cellular orientation [aris-
ing from the second term of Eq. (F1)] is negligible and the
stable cellular orientation is #°=0, i.e., along the parallel di-
rection. Indeed, there exists a minimum value of the applied
stress above which cells orient in the perpendicular direction.
We have also predicted the dynamics of cellular orienta-
tion by solving the coupled relaxation equations,
di_ 1 A0 L H
dt TRU, J0

dr To U,

where f=f_,+f,., the total free energy in scaled units. For
our numerical calculations, we define the dimensionless
scaled time 7=t/ and dimensionless frequency of the ap-
plied stress as w=w,7g. Figure 4 shows the cellular orienta-
tion, 6, at steady state as a function of the Poisson ratio, v.
We show the solution for two different values of ¢,=0.001
(%) and 0.01 (O) for scaled applied strain u,=0.3; an in-
crease in ¢, represents an increase in the matrix forces rela-
tive to the cellular forces. For values of ¢ close to unity or
greater, for fixed applied stress (or equivalently, fixed u,), the
cell orientation is parallel to the applied stress. Comparing
the steady-state orientation determined by the cellular forces
alone (solid line in Fig. 4) with the orientation due to both
the cellular and matrix forces, we find that for positive v
values, an increase in matrix forces causes the steady-state
orientation angle to decrease (become more parallel). This
happens because the matrix forces drive the cell towards par-
allel orientation so that the cell contractility can balance the
external stretch (and thus at least partially restore the matrix
to its uncompressed state); the competition between the cel-
lular and matrix forces eventually sets the steady-state orien-
tation.

We next consider the competition between the cellular
and matrix forces for the case where the set point is con-
trolled by an “optimal stress” in the matrix. In this case, the
average over a cycle of the total free energy of Eq. (9) (con-
sidering @=0) is

() = 5pa cos® 0— B(v)p - 1 + ;(p, cos” 6)>
+cpp[(1 + v)cos® 60— v]. (F5)
orientation is then ¢

The steady-state cellular
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=0,7/2,cos”! g(v,p,.c), where the function g(v,p,,c) is a
complicated function of v, p,, and ¢ which can be approxi-

mated as
1 [2¢ ————
g~ 7\ VAL +w(l+p,)]
BN p,

for (¢/p,) <1. The numerical results for the steady-state ori-
entation are plotted in the inset of Fig. 4 for two different

(F6)
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values of the parameter c that characterizes the strength of
the matrix forces. As we found analytically for the case
where the matrix forces are negligible, the angle has only a
weak dependence on the Poisson ratio compared with the
case in which the strain is the set point. For large values of
the matrix forces, i.e., for values of ¢ (for fixed p,) of the
order of unity, cells orient parallel to the direction of applied
stress.
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